Welcome to the Monash community.

I am delighted that you have chosen the Monash University Foundation Year or MUFY as the pathway to Monash University. Monash University is one of Australia’s prestigious Group of Eight universities, offers an outstanding learning experience. It is internationally recognised for its quality in research and excellence in teaching and learning. With a Monash education, you hold a passport to a promising career and a successful life ahead.

The MUFY program which enjoys international recognition is the preferred university foundation program for many Malaysian as well as international students. It offers students a smooth transition to undergraduate studies and provides them with the foundation to excel at Monash University.

The MUFY curriculum is delivered on a blended learning format which combines face-to-face instruction with self-directed learning delivered on an e-learning platform. This enables students to develop vital learning skills to cope with university studies and even life beyond university. By equipping our students with the relevant tools to become independent learners, we aim to give them a head-start in university, and ultimately, a promising and rewarding future.

I wish you the best and hope you will enjoy the MUFY experience.

Lee Thye Cheong
Director of Programme
Monash University Foundation Year (MUFY)
Sunway College KL

Monash University is an energetic and dynamic university committed to quality education. Learning is an essential part of human existence and at Monash, education is about how ideas change people and how people change the world. The university’s long tradition of excellence is also the result of a firm dedication to outstanding research and international engagement. Today, Monash has grown into a community of more than 59,000 students, 15,000 staff and 250,000 alumni. Being a member of the Australian ‘Group of Eight’ universities makes Monash one of the most distinguished universities in Australia.

Monash University Malaysia was established in 1998 as Monash University’s global footprint in the Asian region. It is the Malaysian constituent of a premier research intensive Australian university which is ranked among the top 100 universities in the world and a member of Australia’s prestigious Group of Eight (Go8). As an independent institution, Monash University Malaysia is accorded a Setara Tier 5 rating for excellence and Self-Accreditation Status by the Malaysian Qualifications Agency (MQA), and all of its courses are accredited in Malaysia and Australia. Its faculty is a mix of locally and internationally recruited academics with intensive teaching, business and industry experience. Students representing almost 70 nationalities are currently enrolled at Monash University Malaysia where they enjoy a quality academic experience.
Pathway to a prestigious university
MUFY is a direct pathway to Monash University, a member of Australia’s Group of Eight universities recognised for excellence in research, teaching and scholarship.

Recognition in Australia and beyond
The MUFY qualification is also recognised by other Australian universities, universities in New Zealand and a growing number of established universities in the UK. This recognition extends to the branch campuses of foreign universities in Malaysia as well as private universities in the country.

Non-discipline specific foundation program
A discipline-specific foundation program such as a foundation in engineering prepares students specifically for undergraduate studies in engineering. On the other hand, a non-discipline specific program such as MUFY does not limit students’ options but offers them a broad pathway to any university course of their choice.

Semesterised study mode
MUFY students complete half of a subject (Unit 1) in one semester before undertaking the second half (Unit 2) in the next semester. This way, students need not face the pressure of preparing for a single final examination at the end of the program.

Flexibility to improve university entry score
To improve their overall score, MUFY students can spend just one semester retaking some units. That means in order to achieve better results, there is no need to repeat the entire program which a non-semesterised pre-university program would require.

Availability of scholarships
MUFY students studying at Sunway College can apply for a broad range of academic and extra-curricular scholarships made available to both domestic and international students. Similarly, Monash University offers scholarships to MUFY students who achieve excellent results.

Reasons to choose MUFY

MUFLY GRADUATE ATTRIBUTES

<table>
<thead>
<tr>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Foundation Year Graduate communicates confidently and effectively through the English language.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ways of thinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Foundation Year Graduate demonstrates flexibility in different ways of thinking and learning.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem solving</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Foundation Year Graduate analyses and evaluates information to solve problems by making judgements and producing innovative solutions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Foundation Year Graduate understands and engages with the world around them using multiple literacies.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Independence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Foundation Year Graduate learns and works independently with integrity and responsibility, using reflective practice to shape their future learning.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Foundation Year Graduate learns and works with others, collaborating effectively to achieve common goals while demonstrating empathy and understanding of different perspectives.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Foundation Year Graduate responsibly engages in an internationalised world with cross-cultural competence, exhibiting, sustainable and inclusive values.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MUFY PROGRAM LEARNING OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Possess disciplinary knowledge of academic studies pursued</td>
</tr>
<tr>
<td>• Able to apply practical skills learnt in progressing to tertiary education</td>
</tr>
<tr>
<td>• Able to relate to social responsibilities, personal identity and cultural awareness in a global context</td>
</tr>
<tr>
<td>• Demonstrate moral/ethical values and professional attitudes</td>
</tr>
<tr>
<td>• Able to communicate articulately through the use of the English Language and work independently and/or interdependently in teams</td>
</tr>
<tr>
<td>• Demonstrate critical thinking abilities and flexibility in different ways of thinking</td>
</tr>
<tr>
<td>• Able to apply ICT skills and take responsibility for one’s own learning</td>
</tr>
<tr>
<td>• Demonstrate enterprise skills while taking action to support sustainability</td>
</tr>
</tbody>
</table>
Duration of study

MUFY is offered as a standard two semester program (January, March and July intakes) or an intensive two semester program (August intake). As such, students are expected to complete this full-time program in 2 semesters.

The duration of each intake is outlined below:

<table>
<thead>
<tr>
<th>Intake</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>January – May</td>
<td>July – November</td>
</tr>
<tr>
<td></td>
<td>March – June</td>
<td>July – November</td>
</tr>
<tr>
<td></td>
<td>July – November</td>
<td>January – May</td>
</tr>
<tr>
<td>Intensive</td>
<td>August</td>
<td>August – November</td>
</tr>
<tr>
<td></td>
<td>August – November</td>
<td>January – May</td>
</tr>
</tbody>
</table>

Intakes

There are three standard intakes in January, March and July, and one intensive intake in August.

Admission requirements

Passed SPM, O-level or equivalent with minimum five (5) grade C including English (or a minimum IELTS score of 5.5 and Writing not less than 5.5 with no band less than 5.0). Students should be at least 16 years old in the year of enrolment. We have students from about forty countries enrolled in MUFY. For more information on entry requirements and application procedures, international students are advised to refer to our Sunway International Office.

Guide to unit selection

MUFY offers a choice of 12 subjects. Each subject is divided into Unit 1 and Unit 2. English is compulsory and all students are required to take English Unit 1 and Unit 2.

List of subjects and their unit components:

<table>
<thead>
<tr>
<th>Name of subject</th>
<th>Name of unit</th>
<th>Name of unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>English (Compulsory)</td>
<td>MUF0011 English Unit 1</td>
<td>MUF0012 English Unit 2</td>
</tr>
<tr>
<td>Accounting</td>
<td>MUF0021 Accounting Unit 1</td>
<td>MUF0022 Accounting Unit 2</td>
</tr>
<tr>
<td>Economics</td>
<td>MUF0061 Economics Unit 1</td>
<td>MUF0062 Economics Unit 2</td>
</tr>
<tr>
<td>Biology</td>
<td>MUF0031 Biology Unit 1</td>
<td>MUF0032 Biology Unit 2</td>
</tr>
<tr>
<td>Chemistry</td>
<td>MUF0041 Chemistry Unit 1</td>
<td>MUF0042 Chemistry Unit 2</td>
</tr>
<tr>
<td>Physics</td>
<td>MUF0121 Physics Unit 1</td>
<td>MUF0122 Physics Unit 2</td>
</tr>
<tr>
<td>Fundamental Mathematics</td>
<td>MUF0141 Fundamental Mathematics Unit 1</td>
<td>MUF0142 Fundamental Mathematics Unit 2</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MUF0091 Mathematics Unit 1</td>
<td>MUF0092 Mathematics Unit 2</td>
</tr>
<tr>
<td>Advanced Mathematics</td>
<td>MUF0101 Advanced Mathematics Unit 1</td>
<td>MUF0102 Advanced Mathematics Unit 2</td>
</tr>
<tr>
<td>Information and</td>
<td>MUF0051 Information and</td>
<td>MUF0052 Information and</td>
</tr>
<tr>
<td>Communication Technology</td>
<td>Communication Technology Unit 1</td>
<td>Communication Technology Unit 2</td>
</tr>
<tr>
<td>Global Studies</td>
<td>MUF0131 Global Studies Unit 1</td>
<td>MUF0132 Global Studies Unit 2</td>
</tr>
<tr>
<td>Contemporary Issues</td>
<td>MUF0151 Contemporary Issues Unit 1</td>
<td>MUF0152 Contemporary Issues Unit 2</td>
</tr>
</tbody>
</table>

Successful completion of the program

A student must pass a minimum of eight different units to complete MUFY successfully. At least six of the eight units must be derived from three subjects i.e. there must be at least three complete subjects. One of the three complete subjects must be English. The remaining two units can be derived from either the same subject or from different subjects. See examples below:

EXAMPLE 1: Selecting nine units

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUF0011 English Unit 1 (Compulsory)</td>
<td>MUF0002 English Unit 2 (Compulsory)</td>
</tr>
<tr>
<td>MUF0091 Mathematics Unit 1</td>
<td>MUF0092 Mathematics Unit 2</td>
</tr>
<tr>
<td>MUF0121 Physics Unit 1</td>
<td>MUF0122 Physics Unit 2</td>
</tr>
<tr>
<td>MUF0041 Chemistry Unit 1</td>
<td>MUF0042 Chemistry Unit 2 OR</td>
</tr>
<tr>
<td></td>
<td>MUF0061 Economics Unit 1</td>
</tr>
</tbody>
</table>

Students in the standard intakes (January, March & July) study four units in semester one and another four in semester two. Students in the intensive intake (August) study three units in semester one and five units in semester two. The maximum number of units a student may study in a semester is FIVE.

EXAMPLE 2: Selecting ten units

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUF0011 English Unit 1 (Compulsory)</td>
<td>MUF0012 English Unit 2 (Compulsory)</td>
</tr>
<tr>
<td>MUF0091 Mathematics Unit 1</td>
<td>MUF0092 Mathematics Unit 2</td>
</tr>
<tr>
<td>MUF0121 Physics Unit 1</td>
<td>MUF0122 Physics Unit 2</td>
</tr>
<tr>
<td>MUF0041 Chemistry Unit 1</td>
<td>MUF0031 Biology Unit 1</td>
</tr>
<tr>
<td>MUF0021 Accounting Unit 1</td>
<td>MUF0061 Economics Unit 1</td>
</tr>
</tbody>
</table>

Students wishing to take ten units must ensure that at least eight of the ten units are derived from four subjects i.e. there must be at least four complete subjects. One of the four subjects must be English. The remaining three units can be derived from either the same subject or from different subjects.

EXAMPLE 3: Selecting ten units

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUF0011 English Unit 1 (Compulsory)</td>
<td>MUF0012 English Unit 2 (Compulsory)</td>
</tr>
<tr>
<td>MUF0091 Mathematics Unit 1</td>
<td>MUF0092 Mathematics Unit 2</td>
</tr>
<tr>
<td>MUF0121 Physics Unit 1</td>
<td>MUF0122 Physics Unit 2</td>
</tr>
<tr>
<td>MUF0021 Accounting Unit 1</td>
<td>MUF0022 Accounting Unit 2</td>
</tr>
<tr>
<td>MUF0041 Chemistry Unit 1</td>
<td>MUF0061 Economics Unit 1</td>
</tr>
</tbody>
</table>

Blended Learning and Bring-Your-Own-Device (BYOD)

MUFY is delivered on a blended learning format which combines face-to-face instruction with self-directed learning delivered on an e-learning platform. This enables students to develop vital learning skills to cope with university studies and even life beyond university. To engage effectively in a blended learning environment, students are advised to bring their own electronic devices such as a laptop or tablet.
Parents’ access to academic progress

The program understands that parents are concerned about their child’s academic progress. Parents can view information about their child’s attendance as well as performance in coursework online using their child’s login details.

To view attendance online, log on to: http://zone.sunway.edu.my

To view coursework results online, log on to: http://elearn.sunway.edu.my

For additional information or to make an appointment to speak to the lecturers, parents are advised to contact the Student Progress Coordinator, Ms. Edith Macintyre at eidi@sunway.edu.my or on +603-7491 8622.

E-Learn

E-learn, an online portal employed to support teaching and learning in MUFY is used across all units of study offered in the program. An interesting feature is it links both lecturers and students in a virtual community. This allows the lecturers to not only share materials which can be viewed/downloaded at the students’ convenience, but it also allows them to conduct assessments and provide feedback to students. E-Learn also serves as an electronic notice board through which the program communicates with students.

Extracurricular activities

MUFY lecturers and the MUFY Student Council organise a variety of extracurricular activities throughout the year. These activities give students the chance to develop skills and enjoy aspects of student life which they may not get to experience in the classroom. These activities also provide an opportunity for students to interact with their lecturers in a less formal setting.

- Orientation camps
- MUFY Sports Carnival
- MUFY Talent Quest
- Recreational trips
- Educational trips
- Motivational workshops/camps
- Community projects

For further information, speak to the Extra-curricular Development Coordinator, Ms. Helen James.

Fee settlement and refund

The Management reserves the right to exclude students from attending classes and using campus facilities until the fees are settled. Any assessment or examination result(s), and academic transcripts shall be withheld if payment remains outstanding, and the students concerned will not be able to enroll in the subsequent semester or to graduate.

Enrolment and General fees are NOT refundable.

The proportion of tuition fee refund, upon official withdrawal, is shown below:

- 75% refund (by the 5th working day from the commencement of semester)
- 50% refund (by the 6th-8th working day from the commencement of semester)
- No refund (after the 8th working day from the commencement of semester)

Counselling and support

Every student is assigned a Progress Advisor who provides counseling regarding academic progress. Students who need personal counselling are advised to consult the MUFY ‘We Care’ Team comprising Ms. Edith Macintyre, Ms. Pang Chop Mui, Ms. Aagalya Perumal, Ms. Helen James and Ms. Haslina Abd Tall. Alternatively, students can consult the personal counsellors in the Student LIFE Centre or call the Mental Health Hotline (+6018-3893220).

Parents understand that if they feel that they have not received a fair mark of examination papers. However, students can apply for a re-marking.

MUFY Academic Transcript and Certificate may be produced on presentation of a Monash username and password. Actual copies of the document shall be withheld if payment remains outstanding, and the students concerned will not be able to enroll in the subsequent semester or to graduate.

Part of the assessment for each unit is a final examination which is conducted at the end of the semester. Attendance is compulsory. Students who are unable to attend must notify the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, Ms. Edith Macintyre and produce a valid medical certificate or other supporting documents that justify their absence. Such cases are then referred to the Student Progress Coordinator, M
Passing a complete subject

Students must pass Unit 1 and Unit 2 of a subject i.e. obtain a minimum 50% in order to achieve an overall pass for that subject. Students passing Unit 1 but failing Unit 2 or the reverse do not achieve an overall pass for that subject even though the average of the two marks is over 50%. For example, a student who obtains 40% for Economics Unit 1 and 70% for Economics Unit 2 does not pass Economics since Unit 1 of the subject has not been passed.

Repeating units

Students can repeat Unit 1 or Unit 2 of a subject provided that no more than five units are taken in that semester. However, students are permitted to repeat any given unit only ONCE. A student who has enrolled for the maximum number of units and who wishes to repeat units can do so in the following semester.

Improving the score of passed units

Students who have passed Unit 1 or Unit 2 of a subject but wish to improve their MUFY university entry score can re-enrol provided that no more than five units are taken in that semester. Alternatively, the units can be repeated in the following semester. However, students are permitted to repeat any given unit only ONCE.

The highest mark combination will be used to determine the MUFY university entry score.

Adding and dropping units

Students select the units they wish to study at the beginning of each semester. However, if they find that they have made an unsuitable choice of units, they are allowed to change their selection of units by adding or dropping certain units within the first two weeks.

Mathematics units

It is important to note that Mathematics is a requirement for a number of undergraduate courses.

It is NOT possible for students to study the following:
- Advanced Mathematics without Mathematics
- Fundamental Mathematics in combination with Mathematics and Advanced Mathematics

Students are allowed to switch from one Mathematics subject to another, for instance, from Mathematics to Fundamental Mathematics. However, by doing so, the student will forfeit the score achieved in Mathematics. In other words, only the Fundamental Mathematics score will contribute to the overall MUFY score.

Attendance

Absence from class

Attendance is taken daily and great importance is placed on regular and punctual attendance as it is a major determinant of success on the MUFY program. As such, a student who is absent from class must produce one of the following in support of the absence:

A. medical certificate; the medical certificate must provide the following details:
 a. the date that the student was examined
 b. duration of medical leave allowed
 c. notes explaining the nature and severity of the illness
 d. the signature and official stamp of the doctor

B. official letter explaining compassionate or compelling circumstances

C. letter from the relevant authorities e.g., scholarship interview letter etc.

Students must produce these documents in advance of their leave (in the case of non-medical reasons) or immediately upon their return to class. These documents must be signed by the lecturer(s) concerned before being submitted to the Student Progress Coordinator, Ms. Edith Macintyre.

Consequences of absence from class

Attendance is monitored on a two-week basis. Students must fulfill an attendance requirement of 80%. A student who does not fulfill this requirement without a valid reason will receive an absenteeism report. In addition, the student will be issued a warning letter. After two warning letters, the student will be barred from taking the upcoming assessment.

Absence from assessments

Students who are unable to take an assessment must produce to any of the MUFY Coordinators (Ms. Edith Macintyre, Ms. Helen James or Ms. Esther Seow) the document(s) outlined in A – C above.

This is for the purpose of obtaining approval to reschedule the missed assessment. These documents must be produced either in advance of absence (in the case of non-medical reasons) or within 24 hours of return to the College.

Failure to do so will result in the student being awarded a zero mark for the missed assessment.

Class punctuality

Students who are more than 5 minutes late will be marked “late” in the attendance record. Students who are more than 15 minutes late will be marked “absent” and they may not be allowed into the class if the lecturer feels that it will disrupt learning.

Program progression

Students are expected to successfully complete the MUFY program in 2 semesters. As such, students passing less than half of the units enrolled in a semester indicate an inability to cope with the program and will therefore be advised to discontinue their studies.

Academic integrity and misconduct

What is Academic Integrity?

Students have academic integrity when they equip themselves with the skills necessary to:
- participate in their learning fairly,
- collaborate with students and lecturers respectfully,
- reference the use of another’s work and ideas, and
- manage time and effort to maximise one’s academic potential.

What is Academic Misconduct?

Using dishonest means to gain unfair academic advantage is academic misconduct. Academic misconduct includes:

Plagiarism

Plagiarism means to take and use another person’s ideas and work and passing them off as one’s own by failing to give appropriate acknowledgement. The submission of essays and assignments is an essential part of the learning process and a vital way of assessing a student’s understanding of a subject. The work submitted must therefore be a student’s own work. This does not mean that students may not make use of the work of others. However, in quoting or paraphrasing material from other sources, those sources must be acknowledged in full. This is usually identified by using indentation or italics with a reference to the author. It may be useful for a student to seek the help of a tutor in preparing a piece of work and to enlist the help of fellow students in sorting out ideas. The final product, however, must be the student’s own words, graphics, drawings and the like.

Cheating

Cheating means seeking to obtain an unfair advantage in an examination or in other written or practical work required to be submitted or completed by a student for assessment. Assisting to cheat means assisting a student in an examination or other written or practical work with the intention that the student will thereby obtain an unfair advantage. The taking of any unauthorised material into examinations, as notes, unauthorised dictionaries or unauthorised calculators, will be regarded as cheating. Students should also note that essays, assignments and other work are generally understood to be the student’s own work and where any such work is identical with, or similar to, another student’s work, an assumption of cheating may arise. Where students wish to undertake work in conjunction with other students, they must seek and obtain the approval of the subject teacher/lecturer.

Collusion

Collusion is the submission by students of substantially similar pieces of work and is prima facie evidence of cheating. Substantial similarity of work can occur only if the students have:
- copied each other
- copied another student’s work
- copied from another source such as a print/internet publication
- reproduced their lecture notes

Falsification of Identity

Impersonation of another person for the purposes of completing an assessed task is a serious form of academic misconduct. Signing an attendance register on behalf of another student is another example of falsification of identity.

Fabrication of Results

Many coursework tasks in the MUFY course require students to research and survey for the purpose of collecting data. It is important that all information generated from the data is legitimate and free from invention and alteration and that the work constitutes a truthful representation of the line of investigation studied.

MUFY students are reminded that any form of academic misconduct is taken seriously and there are expected consequences.

Where the academic misconduct is confirmed, the range of penalties can include, but are not limited to:
- a severe warning;
- disallowance of the work concerned by prohibiting assessment;
- where the work has been assessed, annulling the result of the assessed work;
- failure of the unit;
- exclusion from MUFY.
There are no prerequisites for English Unit 1. MUF0011 English Unit 1: Academic Skills and Composition is a compulsory subject.

Knowledge outcomes
At the end of this unit students will be able to:
- Develop strategies for comprehending, interpreting and communicating written and verbal information
- Apply appropriate referencing techniques and conventions
- Develop an understanding of how to collect, organise, analyse, synthesise and evaluate information
- Apply strategies and conventions for note-taking, paraphrasing, summarising and synthesis
- Understand how best to develop, argue and support their own point of view
- Use conventions of academic writing
- Understand value of feedback and self-reflection in informing learning progress
- Understand the importance of academic integrity in both an educational and professional setting

Skills and behaviours outcomes
At the end of this unit students will be able to:
- Employ strategies for comprehending, interpreting and communicating written and verbal information
- Participate in collaborative learning through speaking, listening and co-operation
- Apply critical thinking skills through reflective decision-making
- Take responsibility for their own growth in learning through self-diagnosis, self-evaluation and establishing goals
- Demonstrate articulate communication through the English language
- Read for gist and read for meaning
- Use language to analyse an argument in both oral and written form
- Demonstrate academic skills such as note-taking, paraphrasing, synthesis of ideas and citation of sources
- Demonstrate an awareness of the principles of academic integrity and be able to apply this in their own academic conduct

Assessment

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1: Synthesis Writing</td>
<td>15%</td>
</tr>
<tr>
<td>Task 2: Group Essay</td>
<td>10%</td>
</tr>
<tr>
<td>Task 3: Group Presentation</td>
<td>10%</td>
</tr>
<tr>
<td>Task 4: Individual Reflection</td>
<td>10%</td>
</tr>
<tr>
<td>Task 5: Argument Essay</td>
<td>15%</td>
</tr>
<tr>
<td>Participation</td>
<td>10%</td>
</tr>
<tr>
<td>Examination</td>
<td>30%</td>
</tr>
</tbody>
</table>

This unit is intended to build on the skills developed in English Unit 1: Academic Skills and Composition. Students will further develop language skills (writing, speaking, listening, and argument), research skills, organisational and study skills. In addition, they will explore a range of concepts through reading and responding to texts and develop their understanding of academic writing conventions. Students will build their research and reflection skills through a major research project. This unit aims to provide students with opportunities to develop the skills necessary to function as confident and competent listeners, speakers, readers and writers of English, building upon the skills developed in Unit 1: consolidating knowledge of academic practices and language and preparing students for a tertiary educational setting.

Prerequisites
Monash University Foundation Year English is a compulsory subject. Students must satisfactorily complete MUF0011 English Unit 1: Academic Skills and Composition before proceeding to MUF0021 English Unit 2: Exploring Ideas.

Knowledge outcomes
At the end of this unit students will know how to:
- Comprehend, interpret and communicate written and verbal information
- Collect, organise, analyse, synthesise and evaluate information
- Explore and respond to a range of ideas through the study of various texts
- Research and present information on a topic
- Plan their work and prioritise their time
- Draft, edit and proofread
- Act on feedback and evaluate their own learning progress

Skills and behaviours outcomes
At the end of this unit students will be able to:
- Demonstrate an understanding of personal identity in conjunction with being able to show an emerging global vision through the exploration of a range of ideas in texts and by researching a challenging topic
- Participate in collaborative learning through speaking, listening and co-operation
- Apply critical thinking skills through inquiry-based learning and reflective decision-making
- Take responsibility for their own growth in learning through establishing goals, self-diagnosis and self-evaluation
- Demonstrate articulate communication using the English language
- Read for meaning
- Plan, structure and revise their own writing
- Plan, prioritise and manage time
- Use language to communicate in both oral and written form
- Employ ICT as a mode of research, communication and presentation
- Collect, interpret and present mathematical data as supportive evidence in a research report
- Demonstrate sustainability and enterprise skills through initiative, problem-solving, reflection and revision

Assessment

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1: Literature Paper</td>
<td>15%</td>
</tr>
<tr>
<td>Task 2: Research Paper</td>
<td>45%</td>
</tr>
<tr>
<td>Participation</td>
<td>10%</td>
</tr>
<tr>
<td>Examination</td>
<td>30%</td>
</tr>
</tbody>
</table>

There are no prerequisites for Unit 1.

Knowledge outcomes
At the end of this unit, students will be able to:
- Identify & define types of business enterprise activities - trading and service
- Identify & describe stakeholders in a trading business
- Describe examples of transactions of a trading business
- Identify and describe stages in the Accounting process
- Identify & apply appropriate Accounting Principles & Qualitative Characteristics throughout the unit
- Identify & describe accounting elements and relationships between them
- Analyse the twofold effect of transactions using the accounting equation
- Apply the rules of double entry accounting to transaction analysis and the recording process
- Identify transactions from source documents
- Describe the purpose and nature of Special Journals and the General Journal
- Identify and describe transactions in Special Journals and the General Journal
- Identify and describe transactions related to the movement of stock into and out of the business
- Identify and describe limitations of preparing a Trial Balance
- Analyse the relationship between Financial Statements
- Identify, define and prepare fully classified financial statements
- Balance Sheet, Income Statement, Cash Flow Statement

Skills and behaviours outcomes
At the end of this unit students will be able to:
- Record financial data from source documents both manually and with information and communication technologies (ICT) using journals, ledgers accounts and subsidiary records
- Summarise financial data and prepare classified financial reports - the Cash Flow Statement, Income Statement and Balance Sheet
- Explain the movement of stock through a trading business, recognising its role as an asset and an expense
- Explain the five Accounting Elements - Assets, Liabilities, Owner's Equity, Revenue and Expenses
- Apply appropriately the Accounting Principles and Qualitative Characteristics to the recording and reporting of financial information
- Use correct accounting terminology
- Apply theoretical knowledge to simulated situations
- Analyze financial reports and communicate results to interested parties
- Evaluate business performance and provide strategies for improvement for the future in terms of profitability, liquidity, efficiency and stability

Assessment

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1: Group video project</td>
<td>15%</td>
</tr>
<tr>
<td>Task 2: Skills and application test 1</td>
<td>15%</td>
</tr>
<tr>
<td>Task 3: Skills and application test 2</td>
<td>15%</td>
</tr>
<tr>
<td>Task 4: Group case study</td>
<td>15%</td>
</tr>
<tr>
<td>Task 5: Participation</td>
<td>10%</td>
</tr>
<tr>
<td>Examination</td>
<td>30%</td>
</tr>
</tbody>
</table>

There are no prerequisites for Unit 2.

Knowledge outcomes
At the end of this unit students will be able to:
- Explain the elements of an accounting system
- Apply Qualitative Characteristics to accounting information for reporting for profit, cash and financial position
- Apply Accounting Principles to the reporting of accounting information for reporting for profit, cash and financial position
- Identify the nature and purpose of adjustments needed for revenue and expenses in order to secure meaningful financial reports
- Explain the distinction between cash and profit
- Prepare financial reports for profit determination, cash flow and financial position
- Prepare extracts of financial reports
- Prepare additional financial reports for performance and assessment
- Assess the performance of a business in relation to profitability, liquidity, efficiency and stability
- Provide strategies for improvement in business performance

Skills and behaviours outcomes
At the end of this unit students will be able to:
- Record financial data from source documents
- Record specific transactions relating to balance day adjustments
- Prepare closing entries and post-adjusted Trial Balances
- Prepare classified Cash Flow Statements, Income Statements, Balance Sheets and reports for these financial reports
- Use correct accounting terminology
- Apply theoretical knowledge to simulated situations
- Analyze financial reports and communicate results to interested parties
- Evaluate business performance and provide strategies for improvement for the future in terms of profitability, liquidity, efficiency and stability

Assessment

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1: Engagement in Learning</td>
<td>15%</td>
</tr>
<tr>
<td>Task 2: Skills & Applications Task (Test)</td>
<td>20%</td>
</tr>
<tr>
<td>Task 3: Academic Poster</td>
<td>15%</td>
</tr>
<tr>
<td>Task 4: Case Study</td>
<td>20%</td>
</tr>
<tr>
<td>Examination</td>
<td>30%</td>
</tr>
</tbody>
</table>
Overview
Biology is the study of living things, their structures and functions. The study of Biology provides the student with an understanding of the natural world and the role that humans play within it. It also provides the student with a scientific framework upon which to build hypothesis and design valid, controlled experiments.

In this unit, students will develop their understanding of the structure and function of cells; the processes involved in the biological reactions of photosynthesis and respiration; homeostatic control of breathing, blood glucose and thermoregulation; and the function of the human immune system.

Knowledge outcomes
At the end of this unit students will be able to:
- Demonstrate an understanding of the language of Biology
- Apply biological and general scientific knowledge to identify and analyse concepts
- Present data or other scientific information using an appropriate format
- Collect, record and analyse data and evaluate experimental design
- Research, interpret and communicate information accurately relevant to a scientific concept
- Recognise the importance of ethics and safety in the laboratory and comply with safety procedures

Assessment
Assessment Task Weighting
Task 1: Skills and Application Task 10%
Task 2: Practical Assessment (x3) 30%
Task 3: Research Presentation 20%
Participation 10%
Examination 30%

Overview
Unit 1 Chemistry examines the structure and properties of matter. It is concerned with the behavior and interaction of chemical substances and the changes that occur during chemical reactions. Unit 1 Chemistry provides insights into natural phenomena at the molecular level, a framework of knowledge for the development of new materials and the means for the attainment of a sustainable environment for the future.

Prerequisites
Before undertaking Chemistry Unit 1, it is recommended that students have completed an appropriate Year 11 Chemistry or equivalent program. This includes a Year 11 knowledge of: Acids and bases, atomic structure, atomic number and mass number, calculation of relative atomic mass, combined gas equation, elements, compounds, mixtures, empirical and molecular formulas, gas behavior and gas laws, intermolecular forces, isotopes, metallic, ionic and covalent bonding, mole calculations, percentage composition, pH, polarity, polymers and polymerisation, properties of water related to structure and bonding, redox reactions, solubility and precipitation, stoichiometry and systematic naming of simple organic compounds.

Knowledge outcomes
At the end of this unit students will be able to:
- Demonstrate an understanding of the language of Chemistry
- Complete calculations relating to the mole, solutions, gases and stoichiometry
- Demonstrate an understanding of atomic structure, the trends in the periodic table and bonding
- Relate bonding to the properties of substances
- Demonstrate an understanding of thermochromy, reaction rates and equilibrium concepts of reactions
- Demonstrate an understanding of acids and bases, including theories, pH calculations and buffers

Skills and behaviours outcomes
At the end of this unit students will be able to:
- Work independently or as a team to achieve outcomes
- Present data or other scientific information using an appropriate format
- Apply chemical and general scientific knowledge to identify, analyse and solve problems using appropriate chemical models, equations and calculations
- Collect, record and analyse data and evaluate experimental design
- Research, interpret and communicate information accurately relevant to a scientific concept
- Recognise the importance of green chemistry and safety in the laboratory and comply with safety procedures

Assessment
Assessment Task Weighting
Task 1: Skills and Application Task 10%
Task 2: Practical Assessment (x3) 30%
Task 3: Research Presentation 20%
Participation 10%
Examination 30%
MUF0051 ICT Unit 1: Introduction to Computers and Programming

Overview
In this unit students will focus on processing data into information, using digital systems, to create information products.

In Study Area 1 students will collect primary data, use spreadsheet software to interrogate the data, then present their findings to an audience. In Study Area 2 students will be introduced to programming by creating applications using the Scratch programming environment. In Study Area 3 students will examine how digital system components are used to convert data into information.

Prerequisites
There are no specific prerequisites for entry to this course. However, it is recommended that students possess basic computing skills. The unit assumes no prior knowledge of the study areas.

Knowledge outcomes
At the end of this unit students will be able to:
• Survey question types (and input controls) used to collect different types of data.
• Design tools used to plan the appearance and/or the functionality of information products.
• Software functions and techniques used to process data into information.
• Conventions appropriate to particular information products.
• Techniques used to evaluate the effectiveness of an information product.
• Purpose and elements of a visual programming environment.
• Capabilities and functions of digital system components.
• Advantages and disadvantages of using cloud computing and networks.

Skills and behaviours outcomes
At the end of this unit students will be able to:
• Construct relevant survey questions to collect a range of primary data.
• Select appropriate design tools to plan particular information products.
• Use correct software functions and techniques to produce the information required.
• Incorporate suitable conventions to enhance the appearance of the information.
• Apply techniques to evaluate the effectiveness of information products.
• Apply computational thinking to develop an application using a programming language.
• Work collaboratively and effectively to explain the function of digital-system components.
• Use feedback to reflect on their own learning and to develop strategies for improvement.

Assessment
Assessment Task Weighting
Task 1: Data Analysis Project 20%
Task 2: Programming Project 20%
Task 3: Written Test 10%
Task 3b: Group Film Project 10%
Participation 10%
Examination 30%

MUF0052 ICT Unit 2: Programming, Database and Data Science

Overview
In Unit 2 ICT students will focus on how data is acquired, managed, and manipulated to meet a particular need.

In Study Area 2 students will handle large data sets, acquired from secondary sources, and use software to manipulate the data. In Study Area 3 students will use a programming language to create working modules.

Prerequisites
The unit assumes no prior knowledge. There are no prerequisites required for MUF0052 ICT Unit 2: Programming, Database and Data Science. Unit 1 and Unit 2 may be taken concurrently or independently.

Knowledge outcomes
At the end of this unit students will be able to:
• Stages involved in the software development process.
• Design tools used to represent software solutions.
• Software types and functions used to manipulate data.
• Techniques used to input and output data and information.
• Characteristics and purposes of data types and data formats.
• Functions and techniques used to validate data.
• Functions and techniques used to test that a solution is working as expected.
• Purpose of data science and techniques used to uncover findings within data sets.

Skills and behaviours outcomes
At the end of this unit students will be able to:
• Develop software solutions following the software development process.
• Use appropriate design tools to plan a software solution.
• Select appropriate data types and formats to store and display data.
• Apply software functions and features to input, manipulate, output and validate data.
• Apply computational thinking skills to develop instructions to solve problems.
• Create and apply a test plan to confirm if a solution is working as expected.
• Work collaboratively to interrogate data to confirm or refute a hypothesis.
• Use a range methods to communicate clearly in English.

Assessment
Assessment Task Weighting
Task 1: Database management system task 20%
Task 2: Data science (group) project 20%
Task 3: Programming practical task 10%
Task 4: Programming written test 10%
Participation 10%
Written examination 30%

MUF0061 Economics Unit 1: Introduction to Microeconomics

Overview
Economics is the study of making choices. It involves analysing economic decision making about how limited resources are allocated to produce goods and services to satisfy people’s unlimited needs and wants. The study of Economics is critical to understanding why individuals, firms and societies behave as they do. When you learn to think like an economist you will view life differently and make more effective decisions. Unit 1 focuses on microeconomic decision making. Students will learn about the economic way of thinking, markets and decision making of firms.

Prerequisites
There are no specific pre-requisites for this unit.

Knowledge outcomes
At the end of this unit students will be able to:
• Explain key economic concepts and the relationship between them.
• Explain and illustrate the operation of the market system.
• Explain sources of market failure and reasons for government intervention in the market.
• Describe the main characteristics of the four types of market structure and analyse the factors that affect the level of competition in each.
• Evaluate perfect competition and monopoly in terms of efficiency.

Skills and behaviours outcomes
At the end of this unit students will be able to:
• Appropriately apply and use economic concepts, theories, models and tools.
• Use a range of sources to acquire economic information.
• Research and communicate economic information.
• Interpret and analyse numerical data.
• Construct diagrams and tables to represent economic data.
• Think critically about economic issues and problems.
• Develop an awareness of how political, ethical, environmental, global and social factors may influence the outcomes of economic decision making.

Assessment
Assessment Task Weighting
Task 1: Skills and Application Task 1 10%
Task 2a: Skills and Application Task 2 15%
Task 2b: Group Essay and Individual Reflection 20%
Task 3: Group Research Presentation 15%
Participation 10%
Examination 30%

MUF0062 Economics Unit 2: Introduction to Macroeconomics

Overview
The focus of this unit is to provide students with an introduction to the major concepts and principles of macroeconomics. Students are introduced to a range of theories and models to assist them in analysing the macroeconomic goals and performance of an economy. Key domestic economic goals related to economic growth, low inflation and full employment, along with external relationships are considered. These topics are followed by an examination of the two major areas of government macroeconomic policy; fiscal and monetary policy.

Prerequisites
MUF0061 Economics Unit 1: An Introduction to Microeconomics is a co-requisite for MUF0062 Economics Unit 2: An Introduction to Macroeconomics. Students must successfully pass Unit 1 before proceeding to Unit 2 or study Unit 1 and Unit 2 concurrently.

Knowledge outcomes
At the end of this unit students will be able to:
• Define key macroeconomic concepts and principles.
• Explain the nature and operation of macroeconomic activity and theory.
• Explain the nature and importance of key macroeconomic goals including economic growth, low inflation, full employment and external stability and describe the factors that may influence the achievement of these goals.
• Explain the nature and operation of government macroeconomic (budgetary/fiscal and monetary) policies used to manage the economy.
• Evaluate the appropriateness of government macroeconomic policies (budgetary/fiscal and monetary) policies used to manage the economy.
• Discuss the possible consequences of specific macroeconomic policies (budgetary/fiscal and monetary) decisions.

Skills and behaviours outcomes
At the end of this unit students will be able to:
• Appropriately apply and use economic concepts, theories, models and tools.
• Use a range of sources to acquire economic information.
• Research and communicate economic information.
• Interpret and analyse numerical data.
• Construct diagrams and tables to represent economic data.
• Think critically about economic issues and problems.
• Develop an awareness of how political, ethical, environmental, global and social factors may influence the outcomes of economic decision making.

Assessment
Assessment Task Weighting
Task 1a: Skills and Application Task 10%
Task 1b: Group Presentation and Individual Reflection 20%
Task 2: Research Essay 20%
Task 3: Skills and Application Task 10%
Participation 10%
Examination 30%
Overview

This course explores the properties of a wide range of functions and their graphs, as well as the calculus process of differentiation. Applications of these properties and processes are an important part of this unit. In this course, students will develop the critical, logical and communicative skills to solve real world problems using higher order mathematical concepts.

Prerequisites

In order to succeed in this unit, it is recommended that students will have satisfactorily completed an appropriate Year 11 Mathematics or equivalent program. Background knowledge and skills in algebra, graph sketching, elementary functions such as polynomial and trigonometric functions, and introductory calculus are essential.

Unit 1 and Unit 2 can be taken concurrently or sequentially. Mathematics (MUF009/MUF0092) is a pre-requisite/co-requisite for Advanced Mathematics (MUF0101/MUF0102). Mathematics (MUF009/MUF0092) cannot be studied in conjunction with Fundamental Mathematics (MUF041/MUF042).

Knowledge outcomes

At the end of this unit students will be able to:

• Recognise power functions \(f(x) = x^n \) when \(n = -1, 1, 2, 3, 4 \), their graphs and be familiar with their properties
• Recognise exponential, logarithmic and trigonometric equations (excluding the graph of the tangent function) and be familiar with their properties
• Solve polynomial, exponential, logarithmic and trigonometric equations (including equations with tangent) and applications in word problems
• Identify and use the properties of inverse functions
• Calculate average and instantaneous rates of change, including the use of the differentiation process for the functions relevant to this unit
• Use differentiation for curve sketching and optimisation problems
• Use problem solving strategies such as: partitioning problems into sub-problems to simplify and organise the investigation process, identifying and working on related problems, and checking validity of answers
• Communicate arguments and strategies, when solving problems, using appropriate mathematical language
• Use mathematical knowledge to solve problems set in ‘real world’ contexts
• Apply knowledge in both routine and non-routine questions

Skills and behaviours outcomes

At the end of this unit students will be able to:

• Work independently, and as an effective member of a team, to solve mathematical problems
• Communicate mathematical ideas using relevant vocabulary and symbols
• Interpret mathematical information, and ascertain the reasonableness of solutions to problems
• Demonstrate awareness of different ways of thinking and problem solving in contexts involving graphs and functions
• Demonstrate proficiency in the use of tools such as graphics calculators, spreadsheets and other technologies
• Analyse mathematical situations in order to draw conclusions and make predictions
• Collaborate and cooperate, challenge the reasoning and perspectives of others, and contribute to mathematical learning to investigations involving a range and balance of situations from life-related to purely mathematical.

Assessment

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1: Progress Test</td>
<td>5%</td>
</tr>
<tr>
<td>Task 2: Language Task</td>
<td>5%</td>
</tr>
<tr>
<td>Task 3: Study Area 1 Test</td>
<td>15%</td>
</tr>
<tr>
<td>Task 4: Study Area 2 Test</td>
<td>15%</td>
</tr>
<tr>
<td>Task 5: Application Task</td>
<td>20%</td>
</tr>
<tr>
<td>Participation</td>
<td>10%</td>
</tr>
<tr>
<td>Final Examination</td>
<td>30%</td>
</tr>
</tbody>
</table>

Assessment

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1: Study Area 1 Test (Matrices)</td>
<td>10%</td>
</tr>
<tr>
<td>Task 2: Study Area 1 Test (Vectors)</td>
<td>15%</td>
</tr>
<tr>
<td>Task 3: Language Task</td>
<td>15%</td>
</tr>
<tr>
<td>Task 4: Study Area 2 Test (Complex Numbers)</td>
<td>15%</td>
</tr>
<tr>
<td>Task 5: Study Area 3 Task (Trigonometry)</td>
<td>10%</td>
</tr>
<tr>
<td>Participation</td>
<td>10%</td>
</tr>
<tr>
<td>Examination</td>
<td>30%</td>
</tr>
</tbody>
</table>

Overview

This course will give students the opportunity to develop their literacy and ways of critical and creative thinking through mathematical discourse. Students will learn to explore, explain, link essential mathematical concepts and ideas as well as apply mathematically by applying elegant techniques. Students will experience and investigate the thinking of Mathematics in real-life world applications with and without the use of technology.

Monash University Foundation Year Advanced Mathematics has been designed to prepare students who intend to undertake tertiary courses with a high mathematical content, or which use a considerable amount of mathematical reasoning.

Advanced Mathematics may be a prerequisite subject for a number of Monash University destination degrees.

Prerequisites

Students undertaking MUF0101 Advanced Mathematics Unit 1: Essential Concepts must be concurrently studying MUF0091 Mathematics Unit 1: Functions and Calculus, or will have satisfactorily completed this unit previously.

At the end of this unit students will be able to:

• Recall mathematical facts related to Differential Equations, Integral Calculus, Kinematics and Vector Calculus
• Identify and explain concepts and terminology outlined in each Study Area
• Apply a range of techniques to manipulate algebraic expressions including factorising, factorising, substituting and solving equations
• Apply a range of specific techniques to obtain antiderivatives for a wide range of functions without use of technology
• Integrate a range of functions and demonstrate independent thinking in solving such problems
• Utilise appropriate technology to support problem solving

Skills and behaviours outcomes

At the end of this unit students will be able to:

• Interpret key terms of each Study Area
• Communicate mathematical ideas using relevant vocabulary
• Make conclusion statements using mathematical expressions as well as common English expressions
• Perform calculations involving differentiation, integration, differential equations, kinematics and vector calculus without the use of technology
• Distinguish between exact and approximate answers
• Use technology to evaluate derivative values and definite integrals
• Use technology to calculate approximate values to a required level of accuracy
• Apply critical thinking to identify key information such as variables, restrictions and requirements
• Analyse given information to solve non-routine problems
• Draw diagrams to support solutions to problems
• Assess and interpret obtained solutions

Assessment

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1: Study Area 1 Test (Calculus Techniques)</td>
<td>15%</td>
</tr>
<tr>
<td>Task 2: Study Area 1 Test</td>
<td>10%</td>
</tr>
<tr>
<td>Task 3: Study Area 2 Test (Differential Equations)</td>
<td>15%</td>
</tr>
<tr>
<td>Task 4: Study Area 2 Test (Kinematics)</td>
<td>10%</td>
</tr>
<tr>
<td>Task 5: Study Area 3 Test (Vector Calculus)</td>
<td>10%</td>
</tr>
<tr>
<td>Participation</td>
<td>10%</td>
</tr>
<tr>
<td>Examination</td>
<td>30%</td>
</tr>
</tbody>
</table>
Overview
Mechanics is an area of Physics that involves the study of the behaviour of physical bodies as a result of forces. These forces produce motion, displacement or a change in state of an object. The unit explores three intertwined aspects of mechanics: Dynamics and Statics, Kinematics and Particles. Dynamics is the study of the motion of particles. Dynamics involves forces and the change they produce in the motion of an object. Kinematics involves force, conditions for equilibrium, and forces acting for translational equilibrium of bodies.

Prerequisites
MUF021 Physics Unit 1: Mechanics and MUF012 Physics Unit 2: Waves. Fields and Particles can be taken in either order or concurrently. However, it is recommended that students successfully complete MUF021 Physics Unit 1: Mechanics prior to undertaking MUF012 Physics Unit 2: Waves, Fields and Particles.

Knowledge outcomes
At the end of this unit students will be able to:
• Define a number of key physical quantities such as displacement, velocity, acceleration, work, momentum, impulse, power, energy, centripetal force, universal gravitational force, stress, strain, torque and strain energy.
• State a number of key laws of classical mechanics such as Newton’s Three Laws of Motion, work-energy, energy and momentum conservation, uniform circular motion and Newton’s law of universal gravitation.
• Solve problems and give correct numerical answers, using a variety of techniques such as application of formulae, diagrams, graphical analysis and scale drawings.
• Apply physics concepts and equations to explain and understand various physical phenomena.
• Understand the role of physics as an experimental science and the need for measurements and data to test validity of models or hypotheses.
• Organise data and apply information to complex situations.
• Use measuring instruments to analyse aspects of kinematics, dynamics and statics.
• Design and perform appropriate experimental investigations.
• Write scientific reports of experimental investigations.

Skills and behaviours outcomes
At the end of this unit students will be able to:
• Apply the principles of classical mechanics when answering quantitative and qualitative questions.
• Show independence, enterprise and flexibility in selecting and using a variety of problem-solving methods.
• Measure and record experimental quantities accurately to the appropriate number of significant figures and give some estimate of the uncertainties.
• Plan and perform experimental investigations effectively, pay attention to safety.
• Work independently to master new concepts making use of a variety of resources.
• Work with other students in teams assigned by the teacher.
• Communicate their understanding of physics in a clear and organised manner using the key words and terms covered in this course.
• Use measuring instruments and technology to obtain relevant experimental data.
• Use spreadsheets to record and manipulate data and produce graphs and trendlines.
• Write an experimental report which includes a conclusion and an evaluation.

Knowledge outcomes
At the end of this unit students will be able to:
• Define key concepts of geometric optics, including reflections from plane mirrors, Snell’s Law for refraction and image formation for converging lenses.
• Define key concepts of wave theory including frequency, period, wavelength, phase and amplitude; and use these concepts in explanations of superposition, interference, beats, standing waves and standing wave patterns.
• Define key concepts of electromagnetic waves including waves, wave speed, wave frequency and wavelength, and electromagnetic spectrum.
• Define key concepts of classical mechanics such as Newton’s Laws of Motion, work-energy, energy and momentum conservation, uniform circular motion and Newton’s Law of Universal Gravitation.
• Define key concepts of quantum mechanics including wave function, quantum state, probability density and Heisenberg’s Uncertainty Principle.
• Define key concepts of modern physics including subatomic particles (protons, neutrons and electrons), the equivalence of mass and energy, energy levels, and the concept of conservation of energy.

Skills and behaviours outcomes
At the end of this unit students will be able to:
• Develop the requisite mathematical capabilities needed in the discipline.
• Work independently or collaboratively in a team, as required, to achieve the intended outcomes of investigations.
• Show initiative and self-reliance in responding to challenges and in taking advantage of opportunities in experimental work.
• Exhibit safe and responsible work practices during laboratory experiments.
• Utilise laboratory equipment appropriately and use materials and energy resources efficiently to satisfy their responsibilities as global citizens.
• Construct tables and graphs to represent experimental data and interpret and analyse this data.
• Apply the ethics of scientific research relevant to investigations in physics and communication of findings.

Assessment
Task 1: Skills and Application Task 15% Task 2: Practical Assessment 30% Task 3: Research Project 15% Participation 10% Examination 30%

Overview
The aim of Physics Unit 2 is to provide students with an introduction to the major concepts, principles and models used in the areas of electromagnetism and quantum physics. This unit introduces students to the fundamentals of classical and quantum theory of waves, electricity and magnetism, and shows how this theory can be applied to a wide variety of realistic and everyday situations. The unit also introduces some aspects of modern quantum physics that indicate the limits of applicability of the classical theory.

Prerequisites
MUF021 Physics Unit 1: Mechanics and MUF012 Physics Unit 2: Waves, Fields and Particles can be taken in either order or concurrently. However, it is recommended that students successfully complete MUF021 Physics Unit 1: Mechanics prior to undertaking MUF012 Physics Unit 2: Waves, Fields and Particles.

Knowledge outcomes
At the end of this unit students will be able to:
• Apply the principles of classical mechanics when answering quantitative and qualitative questions.
• Show independence, enterprise and flexibility in selecting and using a variety of problem-solving methods.
• Measure and record experimental quantities accurately to the appropriate number of significant figures and give some estimate of the uncertainties.
• Plan and perform experimental investigations effectively, pay attention to safety.
• Work independently to master new concepts making use of a variety of resources.
• Work with other students in teams assigned by the teacher.
• Communicate their understanding of physics in a clear and organised manner using the key words and terms covered in this course.
• Use measuring instruments and technology to obtain relevant experimental data.
• Use spreadsheets to record and manipulate data and produce graphs and trendlines.
• Write an experimental report which includes a conclusion and an evaluation.

Knowledge outcomes
At the end of this unit students will be able to:
• Define key concepts of geometric optics, including reflections from plane mirrors, Snell’s Law for refraction and image formation for converging lenses.
• Define key concepts of wave theory including frequency, period, wavelength, phase and amplitude; and use these concepts in explanations of superposition, interference, beats, standing waves and standing wave patterns.
• Define key concepts of electromagnetic waves including waves, wave speed, wave frequency and wavelength, and electromagnetic spectrum.
• Define key concepts of classical mechanics such as Newton’s Laws of Motion, work-energy, energy and momentum conservation, uniform circular motion and Newton’s Law of Universal Gravitation.
• Define key concepts of quantum mechanics including wave function, quantum state, probability density and Heisenberg’s Uncertainty Principle.
• Define key concepts of modern physics including subatomic particles (protons, neutrons and electrons), the equivalence of mass and energy, energy levels, and the concept of conservation of energy.

Skills and behaviours outcomes
At the end of this unit students will be able to:
• Develop the requisite mathematical capabilities needed in the discipline.
• Work independently or collaboratively in a team, as required, to achieve the intended outcomes of investigations.
• Show initiative and self-reliance in responding to challenges and in taking advantage of opportunities in experimental work.
• Exhibit safe and responsible work practices during laboratory experiments.
• Utilise laboratory equipment appropriately and use materials and energy resources efficiently to satisfy their responsibilities as global citizens.
• Construct tables and graphs to represent experimental data and interpret and analyse this data.
• Apply the ethics of scientific research relevant to investigations in physics and communication of findings.

Assessment
Task 1: Team Presentation and Discussion 10% Task 2: Text Response 10% Task 3: In Class Test 10% Task 4: Essay 30% Participation 10% Final Examination 30%

Overview
Global Studies helps you understand the economic, political and cultural links that connect people and countries around the world.

Knowledge outcomes
At the end of this unit students will be able to:
• Recall, explain and perform basic analysis of key elements of globalisation, with particular emphasis on economic and political globalisation.
• Apply understanding of globalisation to key topics studied – migration, global governance and economic globalisation.
• Define key concepts of globalisation, including trade, technology, communication, and the effects of globalisation on society.

Assessment
Task 1: Research Essay 30% Task 2: Socio-Cultural Seminar 10% Task 3: Group Report 20% Participation 10% Examination 30%
Overview
This course will give students the opportunity to develop mathematics skills which can be applied in their everyday lives.

There will be a focus on understanding the world through patterns and relationships, and development of financial skills.

Prerequisites and prohibitions
In order to succeed in this unit of study, students are expected to have satisfactorily completed an appropriate Year 11 Mathematics or equivalent program.

Background knowledge and skills in number operations, and introductory algebra, are essential. It is not expected that time will be spent introducing this presumed knowledge and skills, but it is assumed that the level of proficiency will allow for immediate reinforcement through the application developed within the unit.

Monash University Foundation Year Fundamental Mathematics (MUF041/MUF042) cannot be studied in conjunction with Mathematics (MUF0090/MUF0092) or Advanced Mathematics (MUF0010/MUF0020).

Knowledge outcomes
At the end of this unit students will be able to:
• Define and explain concepts and techniques related to graphs and relations, sequences and series and business mathematics
• Use mathematical knowledge to solve problems set in real world contexts
• Choose and use technology appropriately and efficiently.

Skills and behaviours outcomes
At the end of this unit students will be able to:
• Work independently, and as an effective member of a team, to solve mathematical problems
• Communicate mathematical ideas using relevant vocabulary and symbols
• Interpret mathematical information, and ascertain the reasonableness of solutions to problems
• Demonstrate awareness of different ways of thinking and problem solving in contexts involving graphs and relations, sequences and series and business mathematics
• Demonstrate proficiency in the use of tools such as graphics calculators, spreadsheets and other technologies

Assessment

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1: Language Task</td>
<td>15%</td>
</tr>
<tr>
<td>Task 2: Study Area Test (Graphs & Relations)</td>
<td>20%</td>
</tr>
<tr>
<td>Task 3: Study Area Test (Sequences & Series)</td>
<td>15%</td>
</tr>
<tr>
<td>Task 4: Application Task (Business Mathematics)</td>
<td>10%</td>
</tr>
<tr>
<td>Task 5: Study Area Test (Business Mathematics)</td>
<td>10%</td>
</tr>
<tr>
<td>Participation</td>
<td>10%</td>
</tr>
<tr>
<td>Examination</td>
<td>10%</td>
</tr>
</tbody>
</table>

Overview
This course will give you the opportunity to develop mathematics skills which will be relevant for future study, and careers across a variety of fields. There will be a focus on understanding the world through data, and using analysis to make data meaningful. There will be an opportunity to build on the skills learnt in Unit 1, and extend them into the study of probability and statistics.

Monash University Foundation Year Fundamental Mathematics (MUF041/MUF042) cannot be studied in conjunction with Mathematics (MUF0090/MUF0092) or Advanced Mathematics (MUF0010/MUF0020).

Knowledge outcomes
At the end of this unit students will be able to:
• Define and explain concepts and techniques related to univariate and bivariate statistics, and probability
• Identify and apply specified methods for organising, displaying and summarising datasets
• Apply related mathematical concepts and techniques to solve problems involving univariate and bivariate statistics, and probability
• Communicate arguments and strategies, when solving problems, using appropriate mathematical language
• Use mathematical knowledge to solve problems set in real world contexts
• Choose and use technology appropriately and efficiently.

Skills and behaviours outcomes
At the end of this unit students will be able to:
• Work independently, and as an effective member of a team, to solve mathematical problems
• Communicate mathematical ideas using relevant vocabulary and symbols
• Interpret mathematical information, and ascertain the reasonableness of solutions to problems
• Demonstrate awareness of different ways of thinking and problem solving in contexts involving univariate and bivariate statistics, and probability
• Demonstrate proficiency in the use of tools such as graphics calculators, spreadsheets and other technologies

Assessment

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1: Study Area Test (Univariate Data)</td>
<td>20%</td>
</tr>
<tr>
<td>Task 2: Application Task (Bivariate Data)</td>
<td>25%</td>
</tr>
<tr>
<td>Task 3: Study Area Test (Probability)</td>
<td>15%</td>
</tr>
<tr>
<td>Participation</td>
<td>10%</td>
</tr>
<tr>
<td>Examination</td>
<td>10%</td>
</tr>
</tbody>
</table>
The MUFY Gallery of Excellence features students from Sunway College Kuala Lumpur who were recipients of the MUFY Award of Excellence. The MUFY Award of Excellence is presented to the student who has achieved the highest total score in a particular examination among all the providers of MUFY which include providers in Australia, Malaysia, China, Indonesia and Sri Lanka.

HERIANTO (July 2008)

FANG LI HUNG (July 2010)

LOO HOI LEONG (December 2016)

JACOB YEO HIAO WEN (July 2018)

SOO KUEI-YI (July 2015)

LEE LOONG KUAN (December 2014)

SHIBANI VEEARAGAVAN (July 2014)

MICHelle LAI Tzi Huey (July 2013)

SHUM PEY LING (July 2012)

LOO HOI LEONG (December 2016)

KEE PEI JIN (July 2018)

JASMINE CHIAM WAN ERM (July 2017)

LOO HOI LEONG (December 2016)

JAMeS ANG JIAN CONG (December 2008)

JASMINE CHIAM WAN ERN
Bachelor of Pharmacy
Monash University

TEH JUN ZE
Bachelor of Business & Commerce
Monash University

ASHRAF BIN ALIAS
Bachelor of Computer Science
Monash University

ALIA GAMELIA
Bachelor of Electrical and Computer Systems Engineering (Honours)
Monash University

KAVEENESH ROBERT RAJASHEKAR
Bachelor of Medicine & Bachelor of Surgery
Monash University

KAJENDRA GOVINDASAMY
Bachelor of Communication and Media Studies
Monash University

“Enrolling in MUFY gave me a very memorable college experience and helped me evolve into a better version of myself. MUFY not only provides a balanced course structure but also a great overall college learning environment. The lecturers that taught me were some of the most caring and helpful people with outstanding dedication. My learning through MUFY extends far beyond the classroom and what I’ve learnt will stay with me as I move forward in life.”

“MUFY was a whole new adventure for me where I had the chance to be a part of a diverse community. This exposure definitely aided me in improving my social and communication skills. I also love how MUFY was not only a program that focuses on academically related activities but sports and charity events as well.”

“The MUFY program has been an eye-opening, wholesome and unforgettable experience. The teachers are supportive, dedicated and professional while the program itself has encouraged me to develop as a person, grow and excel in my studies. Overall, MUFY has aided me in gaining the knowledge, assets and skills necessary to perform well in my future undertakings.”

“It would have been very hard for me to equip myself with the skills necessary to get into Monash without taking up MUFY as my pre-university course. The course structure, friendly tutors as well as an amazing student council to work with have made my MUFY journey a memorable one.”
The destination degree entry requirements listed apply to Monash University Foundation Year students who commence their Monash University Foundation Year in 2019, subject to the following exception. In instances where the below listed destination degree entry requirement is different to the score published at the time of a student’s initial enrolment, the entry requirements published at the time of the student’s enrolment will be honoured.

MUFY Diploma Programs

Students who do not meet the entry requirements of Monash University have the option of enrolling in the Diploma of Higher Education Studies (DHES) offered at Monash University Malaysia. This one year program is an alternative pathway to a Monash degree. It allows students to study first year units in four of the Schools – Arts and Social Sciences, Business, I.T. and Science – and qualify for the second year of a chosen degree.

Alternatively, students can enrol on diploma programs offered by Monash College. Monash College offers the Diploma of Art and Design, Diploma of Arts, Diploma of Business and Diploma of Engineering. Similarly, undertaking one of these diploma programs will provide students with a pathway into the second year of Monash University degree programs.
<table>
<thead>
<tr>
<th>Course</th>
<th>Degree Awarded</th>
<th>Company</th>
<th>Total MYP English Score</th>
<th>MYP English 80% Score</th>
<th>Prerequisites and additional requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACULTY OF MEDICINE, NURSING & HEALTH SCIENCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nursing/Midwifery (Honours)</td>
<td>M3001 Bachelor of Nursing and Bachelor of Midwifery (Honours)</td>
<td>Peninsula</td>
<td>72.5%</td>
<td>65%</td>
<td>Fundamentals of Mathematics (min 65%) or Advanced Mathematics (min 75%).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students must complete an International Criminal Check by course commencement. Before undertaking clinical placements, students must:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrition Science</td>
<td>M2001 Bachelor of Nutrition Science</td>
<td>Clayton</td>
<td>72.5%</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupational Therapy (Honours)</td>
<td>M2001 Bachelor of Occupational Therapy (Honours)</td>
<td>Peninsula</td>
<td>72.5%</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students must hold a valid Working with Children Check. Before undertaking clinical placements, students must: Study the immunisation requirements specified by the Faculty. Students must hold a valid Working with Children Check. Students must hold or attain a current registered level 1 first aid certificate. Students must complete a National Police Records Check each year before undertaking clinical placements. Before undertaking clinical placements, students must: Study the immunisation requirements specified by the Faculty. Students must hold a valid Working with Children Check. Students must hold or attain a current registered level 1 first aid certificate. Students must complete a National Police Records Check each year before undertaking clinical placements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramedicine</td>
<td>M2001 Bachelor of Paramedic</td>
<td>Peninsula</td>
<td>65%</td>
<td>65%</td>
<td>Fundamentals of Mathematics (min 65%) or Advanced Mathematics (min 75%).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students must complete an International Criminal Check by course commencement. Before undertaking clinical placements, students must: Study the immunisation requirements specified by the Faculty. Students must hold a valid Working with Children Check. Students must hold or attain a current registered level 1 first aid certificate. Students must complete a National Police Records Check each year before undertaking clinical placements. Before undertaking clinical placements, students must: Study the immunisation requirements specified by the Faculty. Students must hold a valid Working with Children Check. Students must hold or attain a current registered level 1 first aid certificate. Students must complete a National Police Records Check each year before undertaking clinical placements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Health</td>
<td>P3001 Bachelor of Public Health</td>
<td>Clayton</td>
<td>63.75%</td>
<td>65%</td>
<td>Fundamentals of Mathematics (min 65%) or Advanced Mathematics (min 75%).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students must complete an International Criminal Check by course commencement. Before undertaking clinical placements, students must: Study the immunisation requirements specified by the Faculty. Students must hold a valid Working with Children Check. Students must hold or attain a current registered level 1 first aid certificate. Students must complete a National Police Records Check each year before undertaking clinical placements. Before undertaking clinical placements, students must: Study the immunisation requirements specified by the Faculty. Students must hold a valid Working with Children Check. Students must hold or attain a current registered level 1 first aid certificate. Students must complete a National Police Records Check each year before undertaking clinical placements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology (Honours)</td>
<td>P3002 Bachelor of Physiology (Honours)</td>
<td>Peninsula</td>
<td>85%</td>
<td>70%</td>
<td>Any two of Chemistry (min 65%), Biology (min 65%), Physics (min 65%), Mathematics (min 65%) or Advanced Mathematics (min 75%).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students must complete an International Criminal Check by course commencement. Before undertaking clinical placements, students must: Study the immunisation requirements specified by the Faculty. Students must hold a valid Working with Children Check. Students must hold or attain a current registered level 1 first aid certificate. Students must complete a National Police Records Check each year before undertaking clinical placements. Before undertaking clinical placements, students must: Study the immunisation requirements specified by the Faculty. Students must hold a valid Working with Children Check. Students must hold or attain a current registered level 1 first aid certificate. Students must complete a National Police Records Check each year before undertaking clinical placements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACULTY OF PHARMACY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacy (Honours)</td>
<td>P3001 Bachelor of Pharmacy (Honours)</td>
<td>Parkville</td>
<td>70%</td>
<td>70%</td>
<td>Fundamentals of Mathematics (min 65%) or Advanced Mathematics (min 75%).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students must complete an International Criminal Check by course commencement. Before undertaking clinical placements, students must: Study the immunisation requirements specified by the Faculty. Students must hold a valid Working with Children Check. Students must hold or attain a current registered level 1 first aid certificate. Students must complete a National Police Records Check each year before undertaking clinical placements. Before undertaking clinical placements, students must: Study the immunisation requirements specified by the Faculty. Students must hold a valid Working with Children Check. Students must hold or attain a current registered level 1 first aid certificate. Students must complete a National Police Records Check each year before undertaking clinical placements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacy (Honours) and Medical Of Pharmacy</td>
<td>P3001 Bachelor of Pharmacy (Honours)</td>
<td>Parkville</td>
<td>70%</td>
<td>70%</td>
<td>Fundamentals of Mathematics (min 65%) or Advanced Mathematics (min 75%).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students must complete an International Criminal Check by course commencement. Before undertaking clinical placements, students must: Study the immunisation requirements specified by the Faculty. Students must hold a valid Working with Children Check. Students must hold or attain a current registered level 1 first aid certificate. Students must complete a National Police Records Check each year before undertaking clinical placements. Before undertaking clinical placements, students must: Study the immunisation requirements specified by the Faculty. Students must hold a valid Working with Children Check. Students must hold or attain a current registered level 1 first aid certificate. Students must complete a National Police Records Check each year before undertaking clinical placements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology</td>
<td>M3001 Bachelor of Pharmacology (Honours)</td>
<td>Parkville</td>
<td>72.5%</td>
<td>65%</td>
<td>Fundamentals of Mathematics (min 65%) or Advanced Mathematics (min 75%).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students must complete an International Criminal Check by course commencement. Before undertaking clinical placements, students must: Study the immunisation requirements specified by the Faculty. Students must hold a valid Working with Children Check. Students must hold or attain a current registered level 1 first aid certificate. Students must complete a National Police Records Check each year before undertaking clinical placements. Before undertaking clinical placements, students must: Study the immunisation requirements specified by the Faculty. Students must hold a valid Working with Children Check. Students must hold or attain a current registered level 1 first aid certificate. Students must complete a National Police Records Check each year before undertaking clinical placements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Degree Awarded</td>
<td>Total MYP Score (50%)</td>
<td>MYP English Score</td>
<td>Prerequisites and additional requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Criminology</td>
<td>Bachelor of Criminology and Bachelor of Science</td>
<td>Clayton 76.25%</td>
<td>Mathematics (min 65%) or Advanced Mathematics (min 65%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Technology</td>
<td>Bachelor of Information and Bachelor of Information Technology</td>
<td>Clayton 76.25%</td>
<td>Mathematics (min 65%) or Advanced Mathematics (min 65%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design/Business</td>
<td>Bachelor of Communication Design and Bachelor of Industrial Design and Bachelor of Business</td>
<td>Caulfield 75%</td>
<td>Fundamentals in Mathematics (min 65%) or Mathematics (min 65%) or Advanced Mathematics (min 65%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design/Information Technology</td>
<td>Bachelor of Communication Design and Bachelor of Information Technology</td>
<td>Caulfield 75%</td>
<td>Mathematics (min 65%) or Advanced Mathematics (min 65%) or Australian Year 11 required Mathematics (minimum score requirement applies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics (min 65%) or Advanced Mathematics (min 65%) and Chemistry (min 65%) or Physics (min 65%).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education/Business</td>
<td>Bachelor of Education/Bachelor of Education and Bachelor of Business</td>
<td>Clayton 72%</td>
<td>1.25 times the standard 48 credit point fee.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education/Arts</td>
<td>Bachelor of Education/Bachelor of Education and Bachelor of Business</td>
<td>Clayton 70%</td>
<td>Mathematics (min 65%) or Advanced Mathematics (min 65%); Chemistry (min 65%), Mathematics (min 65%), Advanced Mathematics (min 65%), Australian Mathematics (min 60%), Advanced Mathematics (min 60%); Chemistry (min 60%), Mathematics (min 60%).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education/Arts</td>
<td>Bachelor of Education/Bachelor of Education and Bachelor of Business</td>
<td>Clayton 70%</td>
<td>Mathematics (min 65%) or Advanced Mathematics (min 65%); Chemistry (min 65%), Mathematics (min 65%), Advanced Mathematics (min 65%), Australian Mathematics (min 60%), Advanced Mathematics (min 60%); Chemistry (min 60%), Mathematics (min 60%).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>Bachelor of Science (Honours) in Primary Education and Bachelor of Visual Arts</td>
<td>Clayton 70%</td>
<td>Mathematics (min 65%) or Advanced Mathematics (min 65%); Chemistry (min 65%), Mathematics (min 65%), Advanced Mathematics (min 65%), Australian Mathematics (min 60%), Advanced Mathematics (min 60%); Chemistry (min 60%), Mathematics (min 60%).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>Bachelor of Science (Honours) in Primary Education and Bachelor of Visual Arts</td>
<td>Clayton 70%</td>
<td>Mathematics (min 65%) or Advanced Mathematics (min 65%); Chemistry (min 65%), Mathematics (min 65%), Advanced Mathematics (min 65%), Australian Mathematics (min 60%), Advanced Mathematics (min 60%); Chemistry (min 60%), Mathematics (min 60%).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>Bachelor of Science (Honours) in Primary Education and Bachelor of Visual Arts</td>
<td>Clayton 70%</td>
<td>Mathematics (min 65%) or Advanced Mathematics (min 65%); Chemistry (min 65%), Mathematics (min 65%), Advanced Mathematics (min 65%), Australian Mathematics (min 60%), Advanced Mathematics (min 60%); Chemistry (min 60%), Mathematics (min 60%).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>Bachelor of Science (Honours) in Primary Education and Bachelor of Visual Arts</td>
<td>Clayton 70%</td>
<td>Mathematics (min 65%) or Advanced Mathematics (min 65%); Chemistry (min 65%), Mathematics (min 65%), Advanced Mathematics (min 65%), Australian Mathematics (min 60%), Advanced Mathematics (min 60%); Chemistry (min 60%), Mathematics (min 60%).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>Bachelor of Science (Honours) in Primary Education and Bachelor of Visual Arts</td>
<td>Clayton 70%</td>
<td>Mathematics (min 65%) or Advanced Mathematics (min 65%); Chemistry (min 65%), Mathematics (min 65%), Advanced Mathematics (min 65%), Australian Mathematics (min 60%), Advanced Mathematics (min 60%); Chemistry (min 60%), Mathematics (min 60%).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>Bachelor of Science (Honours) in Primary Education and Bachelor of Visual Arts</td>
<td>Clayton 70%</td>
<td>Mathematics (min 65%) or Advanced Mathematics (min 65%); Chemistry (min 65%), Mathematics (min 65%), Advanced Mathematics (min 65%), Australian Mathematics (min 60%), Advanced Mathematics (min 60%); Chemistry (min 60%), Mathematics (min 60%).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>Bachelor of Science (Honours) in Primary Education and Bachelor of Visual Arts</td>
<td>Clayton 70%</td>
<td>Mathematics (min 65%) or Advanced Mathematics (min 65%); Chemistry (min 65%), Mathematics (min 65%), Advanced Mathematics (min 65%), Australian Mathematics (min 60%), Advanced Mathematics (min 60%); Chemistry (min 60%), Mathematics (min 60%).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Course | Degree Awarded | Campuses | Total MUPY Score (out of 100) | MUPY English Score | Prerequisites and additional requirements
--- | --- | --- | --- | --- | ---
Double Degrees

Engineering

Honours / Bachelor of Mechanical Engineering (Honours) and Bachelor of Engineering (Honours) | Clayton | 76.20 | 66 | Mathematics (min 65%) or Advanced Mathematics (min 65%) and Chemistry (min 65%) or Physics (min 65%). Students undertake Mechanical Engineering subjects at Clayton and Mechanical Engineering subjects at Caulfield.

Honours / Bachelor of Electrical and Computer Systems Engineering (Honours) and Bachelor of Science (Honours) | Clayton | 76.20 | 66 | Mathematics (min 65%) or Advanced Mathematics (min 65%) and Chemistry (min 65%) or Physics (min 65%). Students undertake Electrical Engineering subjects at Clayton and Electrical Engineering subjects at Cranbourne.

Information Technology

Honours / Bachelor of Computer Science (Honours) and Bachelor of Information Technology | Clayton | 76.20 | 66 | Mathematics (min 65%) or Advanced Mathematics (min 65%) and Chemistry (min 65%) or Physics (min 65%).

Pharmaceutical Science

Honours / Bachelor of Chemical Engineering (Honours) and Bachelor of Pharmaceutical Science | Clayton | 76.20 | 66 | Mathematics (min 65%) or Advanced Mathematics (min 65%) and Chemistry (min 65%) or Physics (min 65%). Students undertake Chemical Engineering subjects at Clayton and Pharmaceutical Science subjects at Clayton.

Science

Honours / Bachelor of Aerospace Engineering (Honours) and Bachelor of Science | Clayton | 76.20 | 66 | Mathematics (min 65%) or Advanced Mathematics (min 65%) and Chemistry (min 65%) or Physics (min 65%). Students undertake Aerospace Engineering subjects at Clayton and Science subjects at Parkville.

Technology

Honours / Bachelor of Mechanical Engineering (Honours) and Bachelor of Science | Clayton | 76.20 | 66 | Mathematics (min 65%) or Advanced Mathematics (min 65%) and Chemistry (min 65%) or Physics (min 65%). Students undertake Mechanical Engineering subjects at Clayton and Science subjects at Parkville.

Laws

Honours / Bachelor of Professional Subjects | Clayton | 85 | 75 | Mathematics (min 65%) or Advanced Mathematics (min 65%) and Chemistry (min 65%) or Physics (min 65%). Students undertake Professional Subjects at Clayton and Science subjects at Parkville.

Business

Honours / Bachelor of Business Information Technology and Bachelor of Business Information Technology | Caulfield | 70 | 65 | Fundamental Mathematics (min 65%) or Mathematics (min 65%) or Advanced Mathematics (min 65%).

Arts

Honours / Bachelor of Performing Arts (Music) and Bachelor of Business | Caulfield | 70 | 65 | Any Private University Foundation Year Mathematics (min 65%) or Australian Year 1 Equivalent Mathematics (minimum score requirement applies) and other equivalent subjects as determined by Monash University. Students undertake Performing Arts subjects at Caulfield and Business subjects at Clayton.

Information Technology

Honours / Bachelor of Information Technology and Bachelor of Music | Caulfield | 70 | 65 | Any Private University Foundation Year Mathematics (min 65%) or Australian Year 1 Equivalent Mathematics (minimum score requirement applies) and other equivalent subjects as determined by Monash University. Students undertake Information Technology subjects at Caulfield and Music subjects at Clayton.

Science

Honours / Bachelor of Science and Bachelor of Science | Clayton | 85 | 75 | Chemistry (min 65%) and one of Mathematics (min 65%), Advanced Mathematics (min 65%) or Physics (min 65%).

Laws/Arts/Business

Honours / Bachelor of Laws (Honours) and Bachelor of Business | Clayton | 85 | 75 | Any Private University Foundation Year Mathematics (min 65%) or Australian Year 1 Equivalent Mathematics (minimum score requirement applies) and other equivalent subjects as determined by Monash University. Students undertake Laws subjects at Clayton and Business subjects at Clayton.

Laws/Arts/Science

Honours / Bachelor of Laws (Honours) and Bachelor of Science | Clayton | 85 | 75 | Chemistry (min 65%) and one of Mathematics (min 65%), Advanced Mathematics (min 65%) or Physics (min 65%).

Laws/Business/Arts

Honours / Bachelor of Laws (Honours) and Bachelor of Arts | Clayton | 85 | 75 | Any Private University Foundation Year Mathematics (min 65%) or Australian Year 1 Equivalent Mathematics (minimum score requirement applies) and other equivalent subjects as determined by Monash University. Students undertake Laws subjects at Clayton and Arts subjects at Clayton.

Laws/Arts/Music

Honours / Bachelor of Laws (Honours) and Bachelor of Music | Clayton | 85 | 75 | Mathematics (min 65%) or Advanced Mathematics (min 65%) and Chemistry (min 65%) or Physics (min 65%).

Laws/Arts/Commerce

Honours / Bachelor of Laws (Honours) and Bachelor of Commerce | Clayton | 85 | 75 | Mathematics (min 65%) or Advanced Mathematics (min 65%) and Chemistry (min 65%) or Physics (min 65%).

Laws/Arts/Computer Science

Honours / Bachelor of Laws (Honours) and Bachelor of Computer Science | Clayton | 85 | 75 | Mathematics (min 65%) or Advanced Mathematics (min 65%).

Laws/Arts/Chemistry

Honours / Bachelor of Laws (Honours) and Bachelor of Chemistry | Clayton | 85 | 75 | Mathematics (min 65%) or Advanced Mathematics (min 65%).

Laws/Arts/Engineering

Honours / Bachelor of Laws (Honours) and Bachelor of Engineering (Honours) (Civil Engineering) | Clayton | 85 | 75 | Mathematics (min 65%) or Advanced Mathematics (min 65%) and Chemistry (min 65%) or Physics (min 65%).

Honours / Bachelor of Laws (Honours) and Bachelor of Mechanical Engineering (Honours) | Clayton | 85 | 75 | Mathematics (min 65%) or Advanced Mathematics (min 65%) and Chemistry (min 65%) or Physics (min 65%).
QUALITY POLICY

Sunway College (KL), the beacon of higher education, is committed to imparting quality education to our students through efficient management practices by complying with all statutory and regulatory requirements including the requirements of our external partners. We are committed to continual improvement of our scholastic ability and effectiveness by enhancing the awareness of quality and competency of our faculty and management staff; continually reviewing our key processes to ensure compliance to ISO 9001:2015, and respond to customers’ concerns in a timely manner.

QUALITY OBJECTIVES

- Promote and establish a culture of quality at all levels of the college community
- Conform to all statutory and regulatory requirements including the requirements of our external partners
- Provide a learning environment conducive for quality teaching and learning, via:
 - Provision of staff development to enhance customer satisfaction
 - Continuous improvement from feedbacks